

CRD300DA12E-XM3

300 kW High Performance Three Phase Reference Design with Three CAB450M12XM3 1200 V, 450 A SiC Half Bridge Modules + Three CGD12HBXMP Gate Drivers

Technical Features

- Optimized for Cree's All-SiC High-Performance, Low Inductance XM3 Power Module
- Complete Stackup, including: Modules, Cooling, Bussing, Gate Drivers, Voltage / Current Sensors, and Controller
- High-Frequency, Ultra-Fast Switching Operation with Ultra-Low Loss, Low Parasitic Bussing

System Benefits

- Enables Compact, Lightweight Systems
- Increased Power Density
- High Efficiency Operation
- Reduced Thermal Requirements

System Benefits

- High Power Density New Product Development
- High Frequency Converter Applications
- Vehicle Traction Inverters
- Active Front Ends
- Uninterruptible Power Supplies
- Industrial Motor Drives
- Energy Storage
- Grid-Tied Distributed Generation: Solar and Wind
- Smart-Grid / Flexible AC Transmission Systems
- Reduced System Cost

Package

Maximum Ratings ($T_c = 25^\circ\text{C}$ unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions
$V_{DS\max}$	Maximum Drain-Source Voltage	1200	V	
V_{DC}	DC Bus Voltage, Maximum	900		
V_{DC}	DC Bus Voltage, Recommended	800		
I_{DC}	DC Bus Current Ripple, Maximum	300	A	TA = 30 °C at 10 kHz (Set by capacitor rating)

Electrical System Ratings ($T_c = 25^\circ\text{C}$ unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Conditions
$I_{\Phi(\text{rms})}$	AC Output Phase Current (RMS)		360		A	$V_{\text{AC, out}} = 480 \text{ V}_{\text{rms}}$ WEG coolant, 50% blend, 12 L/min., $f_{\text{sw}} = 10 \text{ kHz}$, $V_{\text{DC}} = 800 \text{ V}$, $f_{\text{out}} = 300 \text{ Hz}$, DPF = 1.0, $T_{\text{coolant}} = 25^\circ\text{C}$, $T_a = 25^\circ\text{C}$
f_{sw}	Switching Frequency		20	80	kHz	Based on gate drive power
f_{out}	Fundamental Output Frequency			550	Hz	Controller limited
C_{DC}	DC Bus Capacitor Bank Capacity		300		μF	10 kHz
L_{DC}	DC Bus Capacitor Bank ESL		3.5		nH	
R_{DC}	DC Bus Capacitor Bank ESR		0.4		$\text{m}\Omega$	10 kHz
L_{σ}	DC Bus Stray Inductance		1.8		nH	

Environmental Ratings

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Conditions
T_a	Ambient Temperature		25	40	°C	Higher ambient temperature possible with power derating.
T_{coolant}	Coolant Temperature		25	90		Switching frequency and phase current must be selected as to not exceed $T_{\text{J,Max}}$.
T_{stg}	Storage Temperature	-40		85		
	Installation Altitude			2000	m	Without voltage derating

Thermal & Mechanical Characteristics

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Conditions
A	Area		812		cm^2	
W	Weight		6.2		kg	
V	Volume		9.3		L	
P	Coolant Operating Pressure			5	bar	
Δp	Pressure Drop		200		mbar	$12 \text{ L/min}, T_{\text{coolant}} = 25^\circ\text{C}$
	Mounting Torque		11.0		N-m	AC & DC Terminals, M10 bolts
		2.0	4.0	5.0		Module Power Terminals M5 Bolts
		2.0	3.0	4.0		Module Baseplate M4 Bolts

Input Connector Information

Pin Number	Parameter	Description
1	V_{DC}	Power supply input pin (+12 V Nominal Input)
2	Common	Common
3	HS-P (*)	Positive line of 5 V differential high-side PWM signal pair. Terminated into 120 Ω .
4	HS-N (*)	Negative line of 5 V differential high-side PWM signal pair. Terminated into 120 Ω .
5	LS-P (*)	Positive line of 5 V differential low-side PWM signal pair. Terminated into 120 Ω .
6	LS-N (*)	Negative line of 5 V differential low-side PWM signal pair. Terminated into 120 Ω .
7	FAULT- P (*)	Positive line of 5 V differential fault condition signal pair. Drive strength 20 mA. A low state on FAULT indicates when a desaturation fault has occurred. The presence of a fault precludes the gate drive output from going high.
8	FAULT- N (*)	Negative line of 5 V differential fault condition signal pair. Drive strength 20 mA.
9	RTD-P (*)	Positive line of 5 V temperature dependent resistor output signal pair. Drive strength 20 mA. Temperature measurement is encoded via frequency.
10	RTD-N (*)	Negative line of 5 V temperature dependent resistor output signal pair. Drive strength 20mA. Temperature measurement is encoded via frequency.
11	PS-Dis	Pull down to disable power supply. Pull up or leave floating to enable. Gate and source are connected with 10 k Ω when disabled.
12	Common	Common
13	PWM-EN	Pull down to disable PWM input logic. Pull up or leave floating to enable. Gate driver output will be held low through turn-off gate resistor if power supplies are enabled.
14	Common	Common
15	Reset	When a fault exists, bring this pin high to clear the fault.
16	Common	Common

* Inputs 3 - 10 are differential pairs.

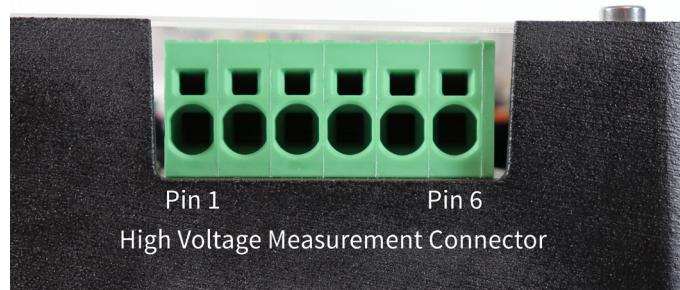
Performance References

- For information on the integrated modules, please reference the [CAB450M12XM3 datasheet](#).
- For information on the integrated gate drivers, please reference the [CGD12HBXMP datasheet](#).
- For higher ambient temperatures, the DC-Link voltage and DC-Link current must be de-rated according to the DC-Link capacitor ratings. Please reference the Fisher & Tausche 1100 V / 100 μ F [CX100u1100d51KF6 datasheet](#).
- The included cold plate is a Wieland MicroCool® CP3012-XM3. In order to calculate the thermal resistance (°C/W) and pressure drop (bar) versus flow rate (liters/min.), please refer to the CP3012-XM3 datasheet documentation provided by the supplier.
- The included current sensor board uses the LEM LF 510-S, please refer to its datasheet for more detailed information.

Controller Connections

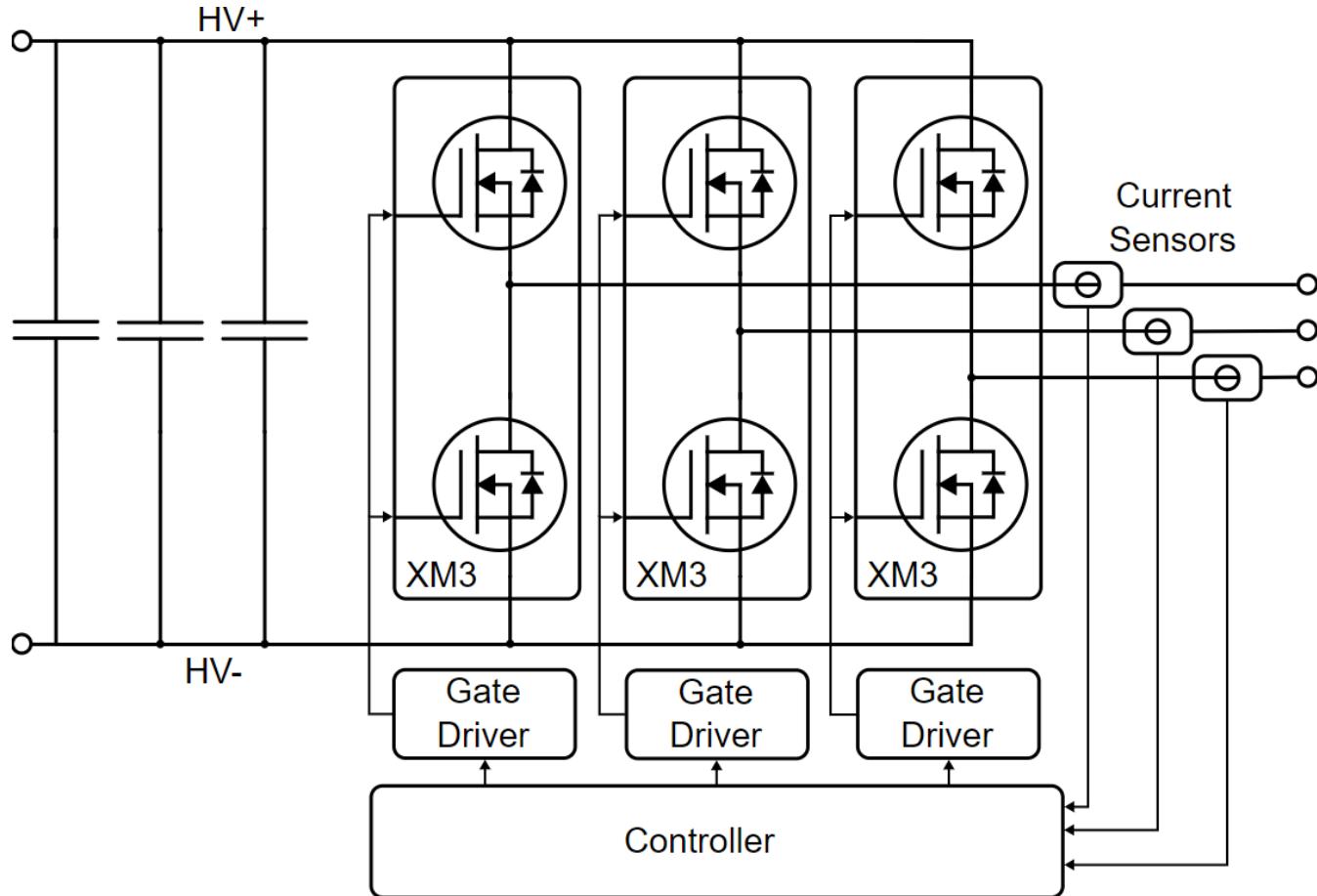
Controller input power supply input utilizes a CUI, PJ-102AH barrel jack connector.

Pin Number	Name	Type	Description
Center	+12V	PWR	+12V Input Power
Sleeve	Ground	-	Controller Ground

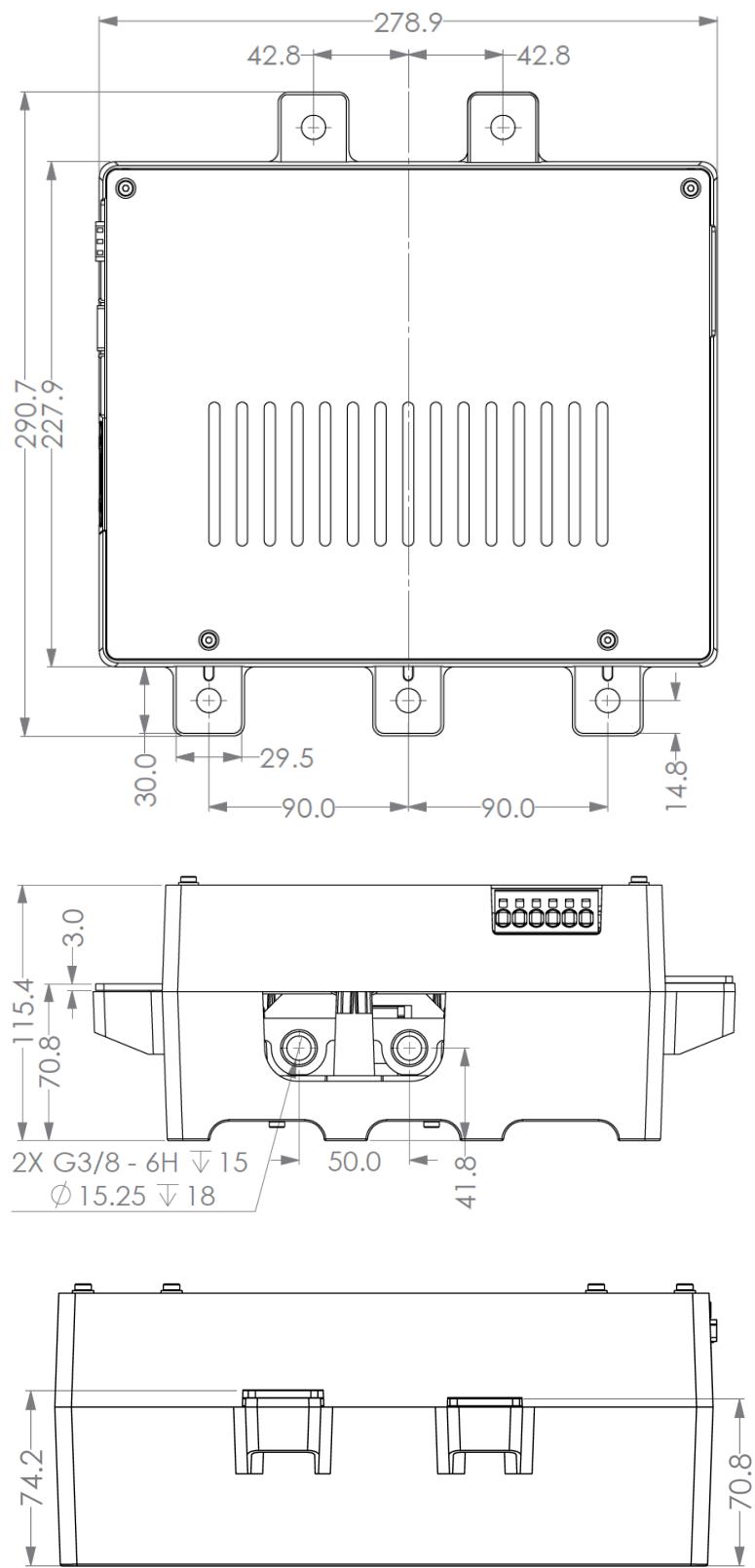

Isolated CAN port utilizes a NorComp, 182-009-113R181 male DE-9 connector.

Pin Number	Name	Type	Description
1	NC	-	NO CONNECT
2	CANA-L	I/O	Isolated CAN Port A Low
3	GND-1	-	Isolated Ground
4	NC	-	NO CONNECT
5	GND-1	-	Isolated Ground
6	NC	-	NO CONNECT
7	CANA-H	I/O	Isolated CAN Port A High
8	NC	-	NO CONNECT
9	+5V-ISO	PWR	Isolated +5V Power Supply Output

Auxiliary controller connector utilizes 3M, 10226-55G3PC connector.


Pin Number	Name	Type	Description
1	CANBL	I/O	Non-isolated CAN port B Low
2	CANBH	I/O	Non-isolated CAN port B High
3	GND	-	Controller Ground
4	GND	-	Controller Ground
5	GND	-	Controller Ground
6	IEXT-m	I	External Current Sensor Signal
7	-15V	PWR	External Current Sensor Power -15V
8	+15V	PWR	External Current Sensor Power +15V
9	GND	-	Controller Ground
10	+3V3	PWR	+3.3V Power Supply Output
11	GND	-	Controller Ground
12	+5V	PWR	+5V Power Supply Output
13	GND	PWR	Controller Ground
14	QEA_A	I	Quadrature Encoder Port A Input A
15	GND	-	Controller Ground
16	QEA_B	I	Quadrature Encoder Port A Input B
17	GND	-	Controller Ground
18	QEA_I	I	Quadrature Encoder Port A Input I
19	GND	-	Controller Ground
20	+5V	PWR	+5V Power Supply Output
21	GND	-	Controller Ground

The voltage sensor input utilizes a Phoenix Contact, 1719231 connector.


Pin Number	Name	Type	Description
1	VA-P	I	Positive High-Voltage Measurement Input Phase A
2	VA-M	I	Negative High-Voltage Measurement Input Phase A
3	VB-P	I	Positive High-Voltage Measurement Input Phase B
4	VB-M	I	Negative High-Voltage Measurement Input Phase B
5	VC-P	I	Positive High-Voltage Measurement Input Phase C
6	VC-M	I	Negative High-Voltage Measurement Input Phase C

Performance References

Full circuit schematics provided upon delivery of the reference design.

Package Dimensions

Supporting Links & Tools

- [CAB450M12XM2: 1200 V, 450 A SiC Half-Bridge Module](#)
- [CGD12HB00D: Differential Transceiver Board for CGD12HBXMP](#)
- [CRD300DA12E-XM3: 300 kW Inverter Kit for Conduction-Optimized XM3 \(CPWR-AN26\)](#)
- [KIT-CRD-CIL12N-XM3: Dynamic Performance Evaluation Board for the XM3 Module \(CPWR-AN27\)](#)
- [CPWR-AN28: Module Mounting Application Note](#)

Notes

Cree, Inc. (on behalf of itself and its affiliates, "Cree") reserves the right in its sole discretion to make corrections, enhancements, improvements, or other changes to the reference design or to discontinue the reference design.

THE REFERENCE DESIGN DESCRIBED IS AN ENGINEERING TOOL INTENDED SOLELY FOR LABORATORY USE BY HIGHLY QUALIFIED AND EXPERIENCED ELECTRICAL ENGINEERS TO EVALUATE THE PERFORMANCE OF CREE POWER SWITCHING DEVICES. THE REFERENCE DESIGN SHOULD NOT BE USED AS ALL OR PART OF A FINISHED PRODUCT. THIS REFERENCE DESIGN IS NOT SUITABLE FOR SALE TO OR USE BY CONSUMERS AND CAN BE HIGHLY DANGEROUS IF NOT USED PROPERLY. THIS REFERENCE DESIGN IS NOT DESIGNED OR INTENDED TO BE INCORPORATED INTO ANY OTHER PRODUCT FOR RESALE. THE USER SHOULD CAREFULLY REVIEW THE DOCUMENT TO WHICH THESE NOTIFICATIONS ARE ATTACHED AND OTHER WRITTEN USER DOCUMENTATION THAT MAY BE PROVIDED BY CREE (TOGETHER, THE "DOCUMENTATION") PRIOR TO USE. USE OF THIS REFERENCE DESIGN IS AT THE USER'S SOLE RISK.

It is important to operate the reference design within Cree's recommended specifications and environmental considerations as described in the Documentation. Exceeding specified ratings (such as input and output voltage, current, power, or environmental ranges) may cause property damage. If you have questions about these ratings, please contact Cree at sic_power@cree.com prior to connecting interface electronics (including input power and intended loads). Any loads applied outside of a specified output range may result in adverse consequences, including unintended or inaccurate evaluations or possible permanent damage to the reference design or its interfaced electronics. Please consult the Documentation prior to connecting any load to the reference design. If you have any questions about load specifications for the reference design, please contact Cree at sic_power@cree.com for assistance.

Users should ensure that appropriate safety procedures are followed when working with the reference design as serious injury, including death by electrocution or serious injury by electrical shock or electrical burns can occur if you do not follow proper safety precautions. It is not necessary in proper operation for the user to touch the reference design while it is energized. When devices are being attached to the reference design for testing, the reference design must be disconnected from the electrical source and any bulk capacitors must be fully discharged. When the reference design is connected to an electrical source and for a short time thereafter until reference design components are fully discharged, some reference design components will be electrically charged and/or have temperatures greater than 50° Celsius. These components may include bulk capacitors, connectors, linear regulators, switching transistors, heatsinks, resistors and SiC diodes that can be identified using reference design schematic. Users should contact Cree at sic_power@cree.com for assistance if a reference design schematic is not included in the Documentation or if users have questions about a reference design's components. When operating the reference design, users should be aware that these components will be hot and could electrocute or electrically shock the user. As with all electronic evaluation tools, only qualified personnel knowledgeable in handling electronic performance evaluation, measurement, and diagnostic tools should use the reference design.

In addition, users are responsible for:

- compliance with all international, national, state, and local laws, rules, and regulations that apply to the handling or use of the reference design by a user or the user's employees, affiliates, contractors, representatives, agents, or designees.
- taking necessary measures, at the user's expense, to correct radio interference if operation of the reference design causes interference with radio communications. The reference design may generate, use, and/or radiate radio frequency energy, but it has not been tested for compliance within the limits of computing devices pursuant to Federal Communications Commission or Industry Canada rules, which are designed to provide protection against radio frequency interference.
- compliance with applicable regulatory or safety compliance or certification standards that may normally be associated with other products, such as those established by EU Directive 2011/65/EU of the European Parliament and of the Council on 8 June 2011 about the Restriction of Use of Hazardous Substances (or the RoHS 2 Directive) and EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (or WEEE). The reference design is not a finished product and therefore may not meet such standards. Users are also responsible for properly disposing of a reference design's components and materials.

THE REFERENCE DESIGN IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE, WHETHER EXPRESS OR IMPLIED. THERE IS NO REPRESENTATION THAT OPERATION OF THIS REFERENCE DESIGN WILL BE UNINTERRUPTED OR ERROR FREE.

IN NO EVENT SHALL CREE BE LIABLE FOR ANY DAMAGES OF ANY KIND ARISING FROM USE OF THE REFERENCE DESIGN. CREE'S AGGREGATE LIABILITY IN DAMAGES OR OTHERWISE SHALL IN NO EVENT EXCEED THE AMOUNT, IF ANY, RECEIVED BY CREE IN EXCHANGE FOR THE REFERENCE DESIGN. IN NO EVENT SHALL CREE BE LIABLE FOR INCIDENTAL, CONSEQUENTIAL, OR SPECIAL LOSS OR DAMAGES OF ANY KIND, HOWEVER CAUSED, OR ANY PUNITIVE, EXEMPLARY, OR OTHER DAMAGES. NO ACTION, REGARDLESS OF FORM, ARISING OUT OF OR IN ANY WAY CONNECTED WITH ANY REFERENCE DESIGN FURNISHED BY CREE MAY BE BROUGHT AGAINST CREE MORE THAN ONE (1) YEAR AFTER THE CAUSE OF ACTION ACCRUED.

The reference design is not a standard consumer or commercial product. As a result, any indemnification obligations imposed upon Cree by contract with respect to product safety, product liability, or intellectual property infringement do not apply to the reference design.