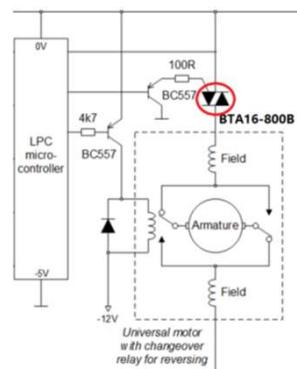
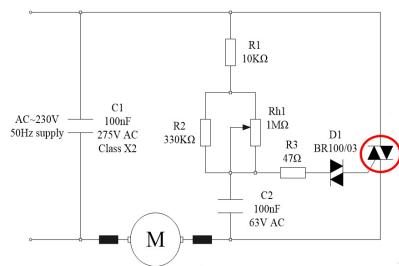


New Product Introduction Q3-2018

Standard (four quadrant): BTA16-600B, BTA16-800B

Applications

Power Tools / Home Appliances / Heating control

Product

Product	Package
BTA16-600B	IITO220
BTA16-800B	IITO220

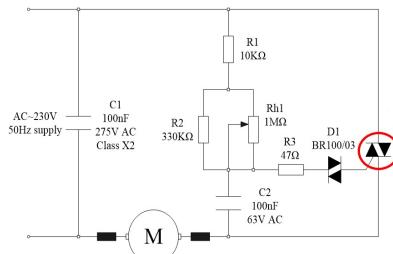
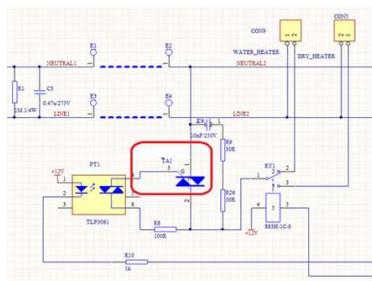
Key Features and Benefits

- Planar passivated 4Q triacs for voltage ruggedness and reliability
- Less sensitive gate design for high immunity to gate noise and false triggering
- Internally insulated package gives the best trade-off of voltage isolation & thermal dissipation capability
- High junction temperature $T_{j(\max)}$ of 150°C

Key Parameters

Parameters	Value
I_{TRMS}	16A @ T_{mb} 112°C
V_{DRM}	600V / 800V
I_{GT}	Q I/II/III: 10mA-50mA; Q IV: 10mA-70mA
I_{TSM}	160A @ 20ms
$T_{j(\max)}$	150°C
$V_{isol(RMS)}$	2500V

Cross Reference



WeEn	Competitor
BTA16-600B	BTA16-600BRG
BTA16-800B	BTA16-800BRG

Hi-Com (three quadrant): BTA316Y-800BT, BTA316Y-800CT

Applications

Power Tools / Home Appliances / Heating control/ Lighting control

Product

Product	Package
BTA316Y-800BT	IITO220
BTA316Y-800CT	IITO220

Key Features and Benefits

- Planar passivated 3Q triacs for voltage ruggedness and reliability
- 3Q Hi-Com™ design; no need for RC snubber for triac protection
- High commutation + very high immunity to false turn-on by dV/dt
- Internally insulated package gives the best trade-off of voltage isolation & thermal dissipation capability
- High junction temperature $T_{j(\max)}$ of 150°C

Key Parameters

Parameters	Value
I_{TRMS}	16A @ T_{mb} 112°C
V_{DRM}	800V
I_{GT}	35mA / 50mA
I_{TSM}	160A @ 20ms
$T_{j(\max)}$	150 °C
$V_{isol(RMS)}$	2500V

Cross Reference

WeEn	Competitor
BTA316Y-800BT	BTA16-800BWRG
BTA316Y-800CT	BTA16-800CWRG

1. General description

Planar passivated high commutation three quadrant triac in a SOT1292 (IITO3P) package intended for use in circuits where high static and dynamic dV/dt and high di/dt can occur. This "series BT" triac will commutate the full RMS current at the maximum rated junction temperature ($T_{j(max)} = 150^\circ\text{C}$) without the aid of a snubber. It is used in applications where "high junction operating temperature capability" is required.

2. Features and benefits

- High current TRIAC
- 3Q technology for improved noise immunity
- High commutation capability with maximum false trigger immunity
- High immunity to false turn-on by dV/dt
- High junction operating temperature capability ($T_{j(max)} = 150^\circ\text{C}$)
- High voltage capability
- Least sensitive gate for highest noise immunity
- Low thermal resistance
- Planar passivated for voltage ruggedness and reliability
- Triggering in three quadrants only
- Insulated tab rated at 2500 V rms

3. Applications

- Applications subject to high temperature ($T_{j(max)} = 150^\circ\text{C}$)
- High current / high surge applications
- High power / industrial controls - e.g. heating, motors, lighting

4. Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{DRM}	repetitive peak off-state voltage		-	-	800	V
$I_{T(RMS)}$	RMS on-state current	full sine wave; $T_{mb} \leq 110^\circ\text{C}$; Fig. 1 ; Fig. 2 ; Fig. 3	-	-	40	A
I_{TSM}	non-repetitive peak on-state current	full sine wave; $T_{j(init)} = 25^\circ\text{C}$; $t_p = 20\text{ ms}$; Fig. 4 ; Fig. 5	-	-	400	A
		full sine wave; $T_{j(init)} = 25^\circ\text{C}$; $t_p = 16.7\text{ ms}$	-	-	440	A
T_j	junction temperature		-	-	150	$^\circ\text{C}$
Static characteristics						

BTA/BTB26 TO3P alternatives

➤ WeEn Semi Benefits:

*Planar Passivated 3Q
8/10 Wks Lead Time
 $T_{jmax} 150^\circ\text{C}$*

1. General description

Planar passivated four quadrant triac in a SOT1292 (IITO3P) package intended for use in circuits where high static and dynamic dV/dt and high di/dt can occur. This triac will commutate the full RMS current at the maximum rated junction temperature ($T_{j(max)} = 150^\circ\text{C}$). It is used in applications where "high junction operating temperature capability" is required.

2. Features and benefits

- High current TRIAC
- Low thermal resistance
- High junction operating temperature capability ($T_{j(max)} = 150^\circ\text{C}$)
- High voltage capability
- Planar passivated for voltage ruggedness and reliability
- Insulated tab rated at 2500 V rms

3. Applications

- High current / high surge applications
- High power / industrial controls -- e.g. heating, motors, lighting

4. Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions	Values	Unit
Absolute maximum rating				
V_{DRM}	repetitive peak off-state voltage		800	V
$I_{T(RMS)}$	RMS on-state current	full sine wave; $T_{mb} \leq 105^\circ\text{C}$; Fig. 1 ; Fig. 2 ; Fig. 3	40	A
I_{TSM}	non-repetitive peak on-state current	full sine wave; $t_p = 20\text{ ms}$; $T_{j(int)} = 25^\circ\text{C}$; Fig. 4 ; Fig. 5	400	A
		full sine wave; $t_p = 16.7\text{ ms}$; $T_{j(int)} = 25^\circ\text{C}$;	440	A
T_j	junction temperature		150	$^\circ\text{C}$

BTA/BTB26 TO3P alternatives

➤ WeEn Semi Benefits:

*Planar Passivated 4Q
8/10 Wks Lead Time
 $T_{jmax} 150^\circ\text{C}$*

WeEn
WeEn Semiconductors